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Abstract

A schematic NJL-type model is employed to investigate kaon and pion conden-
sation in deconfined quark matter in the color-flavor locked (CFL) phase, explicitly
referring to quark degrees of freedom. To that end we allow for non-vanishing pseu-
doscalar diquark condensates in addition to the scalar ones which constitute the
CFL phase. Color neutrality is ensured by the appropriate choice of color chemical
potentials. The dependence of the free energy in the Goldstone condensed phases
on quark masses and charge chemical potentials is found to be in good qualitative
– in most cases also quantitative – agreement with the predictions obtained within
the effective Lagrangian approach.

1 Introduction

It is now generally believed that strongly interacting matter at low temperatures and very
high densities is a color superconductor in the color-flavor locked (CFL) phase [1, 2, 3, 4]
(For reviews on color superconductivity see, e.g., Refs. [5, 6, 7, 8]). For vanishing quark
masses this phase can be characterized by the equality of three scalar diquark condensates
in the color and flavor antitriplet channel,

s22 = s55 = s77 , (1)

where
sAA′ = 〈 qT Cγ5 τA λA′ q 〉 . (2)

Here q is a quark field, and τA and λA′ , A, A′ ∈ {2, 5, 7}, denote the antisymmetric Gell-
Mann matrices acting in flavor space and color space, respectively. In general, these
condensates are accompanied by induced color-flavor sextet condensates, which are, how-
ever, small and will be neglected in this article.

The condensates Eq. (1) break the original SU(3)color × SU(3)L × SU(3)R symmetry
of QCD (in the chiral limit) down to a residual SU(3)color+V , corresponding to a common
(“locked”) rotation in color and flavor space. As a consequence of the breaking of the
color symmetry, all eight gluons receive a mass, while the breaking of chiral symmetry
leads to the emergence of eight pseudoscalar Goldstone bosons. The latter reflect the fact
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that there is a continuous set of degenerate ground states which can be generated from
the CFL ansatz, Eq. (1), via axial flavor transformations

q −→ exp(iθa

τa

2
γ5) q , a = 1, . . . , 8 . (3)

Under these transformations the scalar diquark condensates, Eq. (2), are partially rotated
into pseudoscalar ones,

pAA′ = 〈 qT C τA λA′ q 〉 . (4)

These condensates are expected to become relevant when we consider the less perfect
but more realistic situation where chiral symmetry is explicitly broken through non-zero
quark masses or external charge chemical potentials. In this case the CFL state can
become unstable against developing non-zero values of pAA′, corresponding to pion or
kaon condensation [9, 10, 11].

This behavior has been predicted within low-energy effective field theories which can
be constructed systematically for excitations much smaller than the superconducting gap
∆ [9, 10, 11, 12, 13, 14]. Basically, this is Chiral Perturbation Theory (χPT) with the
essential difference to the well-known χPT at low densities that at high densities the
interaction is weak and the coefficients can be calculated from QCD within High Density
Effective Field Theory [10, 15, 16], which is valid for energies much smaller than the
chemical potential.

Let us briefly summarize the leading-order results which we need for later comparison.
Adopting the notation of Ref. [11], the effective meson masses are given by

M2

π = 2a mq ms, M2

K = a (mq + ms) mq, (5)

where we have assumed equal masses for the light quarks, mu = md =: mq. At asymptotic
densities, the coefficient is given by a = 3∆2/(π2f 2

π) [12], where ∆ is the CFL gap and
the pion decay constant is given by f 2

π = (21 − 8 ln 2)µ2/(36π2).
The mesons experience effective chemical potentials

µ̃π+ = µQ , µ̃K+ = µQ +
m2

s − m2
q

2µ
, µ̃K0 =

m2
s − m2

q

2µ
, (6)

and the same with the opposite signs for π−, K−, and K̄0. The above expressions imply
that meson condensation takes place if µ̃i exceeds the mass of the corresponding meson.
In this case the thermodynamic potential of the system is lowered by

δΩi = −f 2
π

2
µ̃2

i (1 − cos θ)2 , cos θ =
M2

i

µ̃2
i

, (7)

while for µ̃2
i < M2

i θ = 0 and the CFL state is stable.
Note that the above expressions are of order zero in αs. They are therefore universal

in the sense that they should not only hold in QCD, but for any model with the same
symmetry pattern, as long as higher-order corrections in the interaction are small.

Aim of the present article is to study this mechanism and the corresponding CFL +
Goldstone phases within a schematic NJL-type model, explicitly referring to the diquark
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condensates sAA′ and pAA′. Our main motivation for this is the fact that NJL-type models
have successfully been used to investigate various color superconducting phases and their
competition (see Ref. [17] and references therein), but so far the possibility of Goldstone
boson condensation has not been taken into account∗. In particular the recently proposed
gapless phases at densities below the CFL regime [19, 20, 21] have only been studied
within NJL-type models which neglect Goldstone condensates. In the present paper we
want to lay a basis for a more complete analysis in the future. We thereby focus on
the general mechanism. We investigate whether and under which conditions Goldstone
condensation takes place in NJL-type models and compare the results with the predictions
of the effective theories. To keep the analysis as simple as possible we do not consider q̄q
and q̄iγ5τaq condensates at the present stage. An extension of the model in this direction
is straight forward.

2 Chiral transformations

Before we define our model we should discuss the axial transformations introduced in
Eq. (3) in some more details. In this article we consider exclusively flavor non-diagonal
modes of Eq. (3). According to their quantum numbers, these modes can be identified
with charged pions (“π±”, a = 1, 2), charged kaons (“K±”, a = 4, 5), or neutral kaons
(“K0”, a = 6, 7).

As mentioned earlier, under these transformations the scalar diquark condensates are
partially rotated into pseudoscalar ones. For a K0 mode, for instance, the transformed
condensates read

K0 : s′22 = cos
θ

2
s22 p′52 = i sin

θ

2
(θ̂6 − iθ̂7) s22

s′55 = cos
θ

2
s55 p′25 = i sin

θ

2
(θ̂6 + iθ̂7) s55

s′77 = s77 (8)

where θ =
√

θ2
6 + θ2

7 and θ̂a = θa/θ. The primed and unprimed condensates refer to the
values in the transformed state and in the original CFL state, respectively. Similarly,
under K± transformations, s22 and s77 are partially rotated into p72 and p27, respectively,
while π± transformations, rotate s55 into p75 and s77 into p57.

For equal quark masses, because of the residual SU(3)color+V symmetry of the CFL
state, the same combination of diquark condensates could be reached via axial color
transformations

q −→ exp(iθa

λT
a

2
γ5) q , a = 1, . . . , 8 . (9)

∗For a recent NJL-model analysis of pion and kaon condensation in color non-superconducting quark
matter, see Ref. [18]

3



For instance, for a = 6, 7, this transformation yields

K
′0 : s′22 = cos

θ

2
s22 p′25 = i sin

θ

2
(θ̂6 + iθ̂7) s22

s′55 = cos
θ

2
s55 p′52 = i sin

θ

2
(θ̂6 − iθ̂7) s55

s′77 = s77 (10)

Hence, as long as Eq. (1) holds exactly, both transformations, Eq. (8) and Eq. (10), lead
to the same state. On the other hand, in the more realistic case of unequal quark masses,
there is no exact flavor SU(3)V to begin with and, thus, no exact SU(3)color+V in the
CFL phase. In this case the scalar diquark condensates s22, s55, and s77 are in general
not equal and the results of an axial flavor transformation and the corresponding axial
color transformation will be different. Therefore, in order to distinguish between these
two transformations, we indicate axial color transformations by a prime, i.e., π

′±, K
′±,

and K
′0.

Looking at Eqs. (8) and (10) one might think that a maximally meson condensed state
corresponds to a transformation angle θ = π, i.e., when two of the three scalar diquark
condensates are rotated away completely, and the two pseudoscalar diquark condensates
receive their maximum value. This is, however, not true. To see this, it is instructive to
perform an axial transformation on an idealized vacuum state with 〈ūu〉 = 〈d̄d〉 = 〈s̄s〉 =:
φ0. For a K0 transformation, as defined above, this state goes over into

〈ūu〉′ = φ0 , 〈d̄d〉′ = 〈s̄s〉′ = cos θ φ0 , 〈q̄ iγ5τaq〉′ = sin θ θ̂a φ0, a = 6, 7 .
(11)

Obviously, the condensate with the quantum numbers of a kaon is maximal at θ = π/2.
Therefore, since in a color superconductor quark-antiquark states and diquark states can
mix, maximally meson condensed states should correspond to θ = π/2 in this case as well.
This is consistent with the effective Lagrangian description†. We will see that it is also
confirmed by our numerical results.

3 Model

We consider an NJL-type Lagrangian with a point-like color-current interaction,

L = q̄ (i∂/ − m̂) q − g

8
∑

a=1

(q̄γµλaq)
2 , (12)

where q denotes a quark field with three flavor and three color degrees of freedom, m̂ =
diagf(mu, md, ms), and g is a dimensionful coupling constant.

†The angle θ in Eq. (7) corresponds to the rotation angle πa/fπ of the chiral field Σ = exp(iπaλa/fπ)
which transforms like Σ → LΣR†, where L and R are the SU(3) matrices which transform the left and
right handed quarks: qL → L qL, qR → R qR. Hence, for L = R†, the transformation angle for the quarks
is θ/2, which is consistent with Eq. (3).
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Performing a Fierz transformation into the particle-particle channel, the interaction
part can be rewritten as

Lqq =
2

3
g

∑

A,A′

[

(q̄iγ5CτAλA′ q̄T )(qT Ciγ5τAλA′q) + (q̄CτAλA′ q̄T )(qT CτAλA′q)
]

+ . . . ,

(13)
where we have listed only those terms which could potentially lead to a condensation in
the channels sAA′ or pAA′. The mean-field thermodynamic potential in the presence of
these condensates is then given by

Ω(T, {µfc}) = −T
∑

n

∫

d3p

(2π)3

1

2
Tr ln

( 1

T
S−1(iωn, ~p)

)

+
2

3
g

∑

A,A′

(|sAA′|2 + |pAA′|2)

(14)
where T is the temperature, ωn = (2n − 1)πT are fermionic Matsubara frequencies, and
{µfc} (f ∈ {u, d, s}, c ∈ {r, g, b}) denotes the set of chemical potentials related to the
conserved flavor and color densities nfc of the Lagrangian. They are often given as linear
combinations of the chemical potentials µ, µQ, µ3, and µ8 [23], which are related to the
total quark number density n, the electric charge density nQ, and the color densities
n3 = nr − ng and n8 = (nr + ng − 2nB)/

√
3, respectively (nc :=

∑

f nfc).
The inverse propagator in Nambu-Gorkov formalism reads

S−1(p) =

(

p/ + µ̂γ0 − m̂
∑

AA′(∆s
AA′γ5 + ∆p

AA′) τAλA′

∑

AA′(−∆s ∗
AA′γ5 + ∆p ∗

AA′) τAλA′ p/ − µ̂γ0 − m̂

)

, (15)

with µ̂ = diagfc(µfc) and the scalar and pseudoscalar diquark gaps

∆s
AA′ = −4

3
g sAA′ , ∆p

AA′ = −4

3
g pAA′ . (16)

In the following we restrict ourselves to the three scalar condensates of the CFL ansatz,
Eq. (1), plus two pseudoscalar condensates, corresponding to either π± (p57 and p75), K±

(p27 and p72), or K0 modes (p27 and p72). In other words, we allow for condensation
only in one of these modes at a time, which is a reasonable assumption [11]. The inverse
propagator, which is a 72 × 72 matrix, can then be decomposed into a 40 × 40 block
and two 16 × 16 blocks. Making use of the fact that the integrand in Eq. (14) does not
depend on the direction of the 3-momentum, the dimensionality of the blocks can further
be reduced by a factor one half. The determinants of the remaining 20 × 20 and 8 × 8
matrices and the Matsubara sum are evaluated numerically.

Until this point, the thermodynamic potential depends on our choice of the diquark
gaps. As standard, the stable selfconsistent solutions are given by the values of ∆s

AA′ and
∆p

AA′ which minimize Ω. In most cases below, however, we will restrict the minimization
procedure to the subspace of condensates which can be obtained from the CFL solution
(∆p

AA′ = 0) via chiral rotations, Eq. (3) or Eq. (9), in order to compare our results with
the effective Lagrangian approach.
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4 Numerical results

In our numerical studies we adopt the model parameters of Ref. [22], namely a 3-momentum
cut-off Λ = 600 MeV and gΛ2 = 2.6 for the coupling constant. For comparison with the
predictions of the effective Lagrangian approach we keep the quark masses as variable pa-
rameters. As before, we assume equal masses for up and down quarks, mu = md =: mq.
All calculations are performed at zero temperature and at fixed µ = 400 MeV.

To have a well-defined starting point, we begin our analysis in the chiral limit, mq =
ms = 0 and with equal chemical potentials for all quarks, i.e., µQ = µ3 = µ8 = 0. For this
case we find a CFL solution with ∆s

22 = ∆s
55 = ∆s

77 = 104.2 MeV. As expected, this is not
a unique solution for the ground state, but an infinite set of degenerate ground states can
be obtained via chiral rotations. In particular, any rotations in π±, K±, or K0 direction
leave the ground state free energy invariant.

Next we introduce a finite strange quark mass ms = 120 MeV, while leaving the up
and down quarks massless. The explicit breaking of the SU(3) symmetry causes a slight
asymmetry in the ground state, i.e., instead of an ideal CFL solution, Eq. (1), we get a
5% splitting of the gap parameters: ∆s

22 = 105.4 MeV and ∆s
55 = ∆s

77 = 100.7 MeV. It
turns out that the corresponding free energy is still invariant under chiral rotations into
the π± direction, whereas is becomes disfavored, if we perform a rotation into the kaonic
directions. At first sight, this result seems to contradict the effective Lagrangian results,
as summarized in Eqs. (5) - (7).

At this point we should notice that the above ground state is not color neutral. It is
well known that the introduction of unequal masses in the CFL phase leads to colored
solutions in NJL-type models, unless this is corrected for by introducing appropriate color
chemical potentials [23]. This can be thought of as an effective way of simulating static
gluon background fields, which presumably take care of color neutralization in QCD. In
the above example we need to introduce a chemical potential µ8 = −10.12 MeV in order
to obtain a color neutral CFL solution. This solution has a smaller splitting of the gaps,
∆s

22 = 103.4 MeV and ∆s
55 = ∆s

77 = 101.8 MeV, and is about 0.2 MeV/fm3 higher in free
energy as the colored one.

However, the essential observation is that, restricting ourselves to color neutral solu-
tions, the CFL state does no longer correspond to the ground state of the system if we
allow for chiral rotations. This is illustrated in the left panel of Fig. 1 where the relative
change of the free energy density is plotted as a function of the angle θ for chiral rotations.
While the rotations in pion direction (dashed line) still leave the free energy invariant, the
kaonic transformations now lead to a reduction of Ω. (Note that charged and neutral kaon
solutions are degenerate under the present conditions.) Here the dotted line indicates the
result of an axial flavor rotation (K± or K0), and the solid line the result of an axial color
rotation (K

′± or K
′0). As one can see, the latter is more favored and symmetric about a

minimum at θ = π/2, while the former is less favored and slightly asymmetric.
This can be explained by the fact that, e.g., a K0 rotation transforms the larger s22,

in which u and d quarks are paired, into the us condensate p52, whereas the smaller
us condensate s55 is rotated into the ud condensate p25. Hence, the number of strange
quarks is larger at θ = π than at θ = 0, which explains why θ = π is less favored. In
a K

′0 transformation, on the other hand, ud condensates remain ud condensates and ds
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Figure 1: Relative change of the free energy density as a function of the chiral angle for
mu = md = 0 and ms = 120 MeV. The calculations have been performed at µ = 400 MeV
and µQ = 0 (left) or µQ = −50 MeV (right). The color chemical potentials have been adjusted
to obtain color neutral solutions. The various lines correspond to different modes as indicated
in the figure. The crosses indicate the free energy obtained by minimizing the thermodynamic
potential for color neutral matter without restriction to chiral transformations.

condensates remain ds condensates, since axial color transformations do not change the
flavor structure. Therefore the number of strange quarks at θ = π is equal to the number
of strange quarks at θ = 0, and both states are degenerate.

None of the above results corresponds to the real minimum of the thermodynamic
potential, since we have restricted ourselves to certain chiral rotations of the CFL solu-
tion without allowing for “radial” variations. This means, instead of freely varying the
scalar and pseudoscalar condensates under consideration, we have linked them to the CFL
solution and a single parameter θ, e.g., as given in Eqs. (8) and (10) for the K0 or the
K

′0 case, respectively. If we abandon this constraint we find solutions with even lower
free energies, indicated by the cross in the figure. These solutions are very similar to a K ′

state at θ = π/2, in the sense that, e.g., |∆s
22| = |∆p

25| and |∆s
55| = |∆p

52|, but the values
of the ud condensates are slightly larger (74.2 MeV = 104.9 MeV/

√
2) and the values of

the us are slightly smaller (70.9 MeV = 100.2 MeV/
√

2) than the rotated CFL gaps.
In fact, in our context the K ′-transformations should also be interpreted as certain

“radial” transformations on top of the axial flavor transformation K, and not as axial
color transformations. Note that, even in the chiral limit, axial color transformations,
Eq. (9), are neither a symmetry of QCD nor of our NJL-model Lagrangian, Eq. (12).
They are just a symmetry of the mean-field thermodynamic potential, as long as we
restrict ourselves to the given set of diquark condensates. It will no longer be the case if,
e.g., q̄q condensates are taken into account. In the present model, the difference between
the K and K ′ transformations is due to the non-equality of the diquark condensates in the
CFL phase (cf. Eqs. (8) and (10)). This is a higher-order effect, which is not taken into
account in the leading-order results of the effective Lagrangian approach. Hence K and
K ′ transformations are in principle equally good starting points for a comparison with the
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effective theory. However, in some aspects the K ′ transformations behave more similar to
the kaon modes in the effective theory since they are symmetric about θ = π/2‡. Moreover,
they come closer to the true minimum of the thermodynamic potential. Therefore, for
most of quantitative studies in this article we perform K ′ transformations rather than K
transformations. Note that for the pion modes there is no difference anyway.

In the right panel of Fig. 1 we show the result of a similar analysis, again for ms =
120 MeV, but now for a non-vanishing electric charge chemical potential µQ = −50 MeV.
The color chemical potentials µ3 and µ8 have again been adjusted to ensure color neutrality
at each point. Under these conditions all flavored Goldstone modes lead to a reduction
of the free energy, but the pionic mode (dashed line) is the most favored one, followed
by the charged kaons (dash-dotted). The neutral kaon is not sensitive to µQ and shows
the same behavior as in the left panel. Again, none of the modes corresponds to the real
minimum of the thermodynamic potential one gets if the condensates are not constrained
to certain chiral rotations. This free energy is again indicated by a cross in the figure.

At least qualitatively, the results presented in Fig. 1 are in good agreement with the
predictions of the effective Lagrangian approach. For a more quantitative comparison
we again restrict ourselves to chiral transformations of the CFL solution. In Fig. 2 we
show the behavior of the free energy gain of the meson condensed solutions (θ = π/2)
for massless up and down quarks as functions of µQ (left panel) and ms (right panel).
At each point, the color chemical potentials µ3 and µ8 have been tuned to ensure color
neutrality.

The left panel shows the behavior of δΩ for the three Goldstone boson condensates π±,
K

′±, and K
′0 at fixed chiral angle θ = π/2 as functions of µQ at fixed ms = 120 MeV. Since

according to Eqs. (5) to (7) we expect δΩπ to behave like µ2
Q, we plot the dimensionless

ratio δΩ/(µ2µ2
Q). Indeed, our result for the pionic mode is constant to a very high degree

(dashed line). δΩK
′0, on the other hand, does not – and should not – depend on µ2

Q, and
hence the corresponding curve (solid line) decreases like 1/µ2

Q in the figure. Finally, the
charged kaons behave more complicated. According to Eq. (6), µK± vanishes at µQ =
−ms/(2µ), leading to a maximum in the free energy. This behavior is well reproduced
in our model calculation (dash-dotted) line. In fact, in the µQ interval between -13 MeV
and -22 MeV, δΩK

′± gets even slightly positive. We have not yet analyzed this behavior
in detail, but a natural explanation would be that the kaon is not exactly massless, as
suggested by Eq. (5), but has a small mass of about 5 MeV, even for mq = 0. Note that in
QCD there are correction terms of order αs to Eq. (5) which are proportional to m2

s [25].
Similar terms in the NJL model could be responsible for the observed behavior.

For comparison, we also show the effective Lagrangian results, based on Eqs. (5)
to (7), for the free energy (dotted lines). Here we treat fπ as a free parameter which
is fitted to reproduce the pion. We obtain fπ = 80 MeV, which also gives reasonable
fits to the kaons. The fitted value agrees quite well with the leading-order result fπ =
√

(21 − 8 ln 2)µ/(6π) = 83.4 MeV. Again, there should be corrections to this formula due
to the interaction. These could depend on the meson channel as well as on ms and µQ. Of

‡For instance, the color chemical potentials needed to neutralize the K ′ solution at the minimum at
θ = π/2 satisfy the relation µ3 =

√
3 µ8. This is in nice agreement with the ratio between the third and

the eighth color component of the static gluon field, φc
3

=
√

3φc
8
, obtained in Ref. [24] for neutral CFL +

K0 solutions. This relation does not hold for the K solution in our model.
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Figure 2: Free energy density difference between meson condensed phase (θ = π/2) and CFL
phase (θ = 0) as functions µQ (left) or ms (right). The calculations have been performed for
mu = md = 0 and at fixed µ = 400 MeV. The color chemical potentials have been adjusted to
obtain color neutral solutions. In the left panel µQ = 0, in the right panel ms = 120 MeV. The
various lines correspond to different modes as indicated in the figure. The bold lines have been
obtained within the present model while the thin dotted lines correspond to Eqs. (5) to (7) with
fπ = 80 MeV.

course, meson masses and decay constants could be calculated explicitly within the NJL
model, summing up qq̄ loops in Nambu-Gorkov formalism (which are essentially diquark
loops) and coupling them to an external axial current. This is left for future work.

In the right panel of Fig. 2 the free energy of the kaonic modes (K and K ′) at µQ = 0
is shown as a function of ms. Since according to Eqs. (5) to (7) we expect δΩK to behave
like m4

s we plot the ratio δΩ/m4
s. However, whereas for ms & 100 MeV this ratio indeed is

roughly constant, we find strong deviations at lower strange quark masses. In fact, below
ms = 31 MeV the kaon modes are no longer favored. Again, this points into the direction
of a finite kaon mass due to higher-order effects.

For comparison we show again the results according to Eqs. (5) to (7) for fπ = 80 MeV
(dotted line). In order to fit the K ′ result in the regime where the curve becomes flat we
would need to reduce fπ by about 5%. Since, as mentioned above, the precise value of
the decay constant can depend on the meson type as well as on ms and µQ, this is not
unreasonable. (Also note that higher-order effects do not only change the value of fπ but
also the dependence of δΩ on it.)

Finally, we consider non-vanishing masses for both, strange and non-strange quarks.
Then, according to Eq. (5), the effective Goldstone masses become finite even at leading
order, and ms or µQ have to exceed certain threshold values to enable Goldstone boson
condensation. Our results are summarized in Fig. 3. The full squares, circles and tri-
angles correspond to NJL-model calculations with mq = 5 MeV, 10 MeV, and 15 MeV,
respectively.

In the two left figures we show the behavior of the pionic solutions for fixed ms =
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Figure 3: Chiral angle (upper panels) and corresponding free energy gain (lower panels) of
meson condensed phases at µ = 400 MeV for non-vanishing light quark masses mq. The full
squares, circles, and triangles indicate the NJL model results for mq = 5 MeV, 10 MeV, and
15 MeV, respectively. The dotted lines are the corresponding results of Eqs. (5) to (7) with
a = 0.169 and fπ = 80 MeV. Left: pion condensate for ms = 120 MeV and varying µQ. Right:
kaon condensate (K ′) for µQ = 0 and varying ms.

120 MeV as functions of µQ. In the upper panel the chiral angle θ is shown which
minimizes the free energy. As expected, this angle is zero for small values of |µQ| and
becomes non-zero above a threshold value which depends on the quark mass. It turns
out that this behavior can be described well by Eqs. (5) to (7) if we treat the constant a
which enters into the expression for the meson masses as a free parameter. The dotted
lines, which run almost perfectly through the points, have been obtained with a = 0.169.
Unfortunately, this is only about 1/3 of the leading-order result a = 3∆2/(π2f 2

π) [12], if
we take ∆ ∼ 100 MeV and fπ = 80 MeV. The origin of this discrepancy is not clear. Since
in Fig. 2 we found the leading-order results to be in rather good agreement with the pion
channel, a factor-3 effect in the present case is a bit surprising. Here a determination of
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the pion mass, summing up Nambu-Gorkov loops under the present conditions, could be
helpful independent test.

In the lower left panel we display the corresponding free energy gain. The dotted lines
indicate the results of Eqs. (5) to (7), taking the previously fitted constants a = 0.169
and fπ = 80 MeV. Obviously, we obtain a perfect description of the NJL model results
without refitting these constants.

In the right two figures the analogous quantities are shown for kaon (K ′) condensates
at µQ = 0 as functions of the strange quark mass. The dotted lines correspond to Eqs. (5)
to (7) with the values for a and fπ fitted in the pion channel. Obviously, the overall
behavior is well reproduced, although the quantitative agreement is not as good as in the
left two panels. In fact, the deviations are consistent with our earlier results: As one can
see in the upper figure, the NJL-model results for the thresholds for kaon condensation
are at somewhat higher values of ms than the dotted lines suggest. This could again
be explained by a positive correction term to the kaon mass beyond the leading order.
Accordingly, the NJL-model results for δΩ (lower right panel) are also shifted to higher
values of ms as compared with the dotted lines. On the other hand, for large ms, the light
quark masses become less relevant and the results approach the mq = 0 values of Fig. 2.

5 Summary and outlook

We have studied pion and kaon condensation in the CFL phase within an NJL-type
model. To that end we have performed a mean-field calculation allowing for non-vanishing
expectation values of certain scalar and pseudoscalar diquark condensates. Main focus of
the present article was on the general principle. We have explicitly shown that Goldstone
condensates, i.e., non-vanishing expectation values of pseudoscalar diquark condensates,
develop in reaction to a finite strange quark mass or a finite electric charge chemical
potential. In this context it was essential to introduce color chemical potentials to ensure
color neutrality of the CFL and the CFL + Goldstone solutions.

More quantitatively, we found good over-all agreement of the NJL-model results with
predictions obtained within chiral perturbation theory in the CFL phase to leading order
in the interaction. The most intriguing exception is the coefficient a, which determines the
dependence of the Goldstone boson mass on the quark masses. Fitting this coefficient to
our results, it turned out to be only one third of the leading order High Density Effective
Theory value [12]. The reason for this discrepancy is not yet clear and surely deserves
further investigations. Apart from this problem we found minor deviations in the kaon
sector which seem to indicate that higher order corrections to the kaon mass are not
completely negligible.

Having demonstrated the general consistency of the method, we should now extend our
analysis to perform a more complete study of the phase structure of strongly interacting
matter at high densities. In the present article, we have restricted the space of possible
diquark condensates in most cases to certain chiral rotations, in order to facilitate the
comparison with the effective theories. This restriction should be relaxed. As shown in
Fig. 1, this can lead to a further reduction of the free energy.

The model should also be extended to include quark-antiquark condensates, like 〈ūu〉,
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〈d̄d〉, and 〈s̄s〉, which lead to density dependent effective quark masses and in this way
could influence the phase structure considerably [22]. Now, in order to study Goldstone
boson condensation, we also need to take into account the corresponding chiral partners,
〈q̄ iγ5τaq〉. These condensates are the essential degrees of freedom to describe pion and
kaon condensates in color non-superconducting phases, which have recently been studied
in great detail in Ref. [18]. In the CFL phase, the dominant effects should be due to the
diquark condensates, but nevertheless, quark-antiquark condensates could lead to impor-
tant corrections. We should also note that our toy-model Lagrangian, Eq. (12), misses
instanton effects, which could significantly contribute to the Goldstone boson masses [26].
Finally, it would be interesting to extend the analysis to the gapless CFL phase.
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[3] T. Schäfer, Nucl. Phys. B 575 (2000) 269.

[4] N. Evans, J. Hormuzdiar, S.D. Hsu, and M. Schwetz, Nucl. Phys. B 581 (2000) 391.

[5] K. Rajagopal and F. Wilczek, “The Condensed Matter Physics of QCD”, in: B.L.
Ioffe Festschrift At the Frontier of Particle Physics / Handbook of QCD, vol. 3, edited
by M. Shifman, World Scientific, Singapore, 2001, pp. 2061–2151.

[6] M. Alford, Ann. Rev. Nucl. Part. Sci. 51 (2001) 131.
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